Stop a stock trade and avoid a catastrophic global financial crash. Seal a microscopic crack and prevent a rocket explosion. Push a button to avert a citywide blackout.
Though such situations are mostly fantasies, a new analysis suggests that certain types of extreme events occurring in complex systems – known as dragon king events – can be predicted and prevented.
“A chaotic system may be in flux, and look like random behavior,” said physicist Daniel Gauthier of Duke University, co-author of a paper appearing Oct. 30 in Physical Review Letters. “But maybe there’s some internal structure we can identify that leads to destabilizing events.”
By looking at a simple experimental chaotic system, Gauthier and his co-authors have been able to detect telltale signs that a dragon king event was approaching and, most importantly, stop it from happening. If this work can be generalized to more complex systems, such as climate, power grids, and financial markets, it could be used to forecast and perhaps forestall extreme behavior.
The story of this finding begins in the mid-90s when Gauthier was studying the behavior of simple electronic circuits that were trained to follow one another. His team did this by periodically measuring the difference in either the voltage or current between the two circuits. They would use this difference to give one system a tiny kick. The idea was to synchronize the circuits as much as possible. And, for the most part, it worked: One circuit followed the behavior of the other.
But occasionally, the two circuits would get out of whack. Essentially, the leader circuit was losing control of its follower, which would go off on its own and exhibit completely different behavior. This desynchronization event would eventually get corrected – the tiny kicks would push the follower circuit back to the same behavior as its leader. But the results remained a bit of a head scratcher, until Gauthier figured out what was going on....
[...]
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου